Demonstration of a slow-light laser radar
نویسندگان
چکیده
منابع مشابه
Demonstration of a slow-light laser radar.
We propose and demonstrate a proof-of-concept system for a coherently combined multi-aperture slow-light laser radar. By employing slow-light delay elements in short-pulse-emitting systems to ensure synchronized pulse arrival at the target, we show that it is possible to simultaneously achieve high resolution in the transverse and the lateral dimensions with a wide steering angle.
متن کاملA slow-light laser radar system with two-dimensional scanning.
We propose a multi-aperture slow-light laser radar with two-dimensional scanning. We demonstrate experimentally that we can use two independent slow-light mechanisms, namely dispersive delay and stimulated Brillouin scattering, to dynamically compensate the group delay mismatch among different apertures, while we use optical phase locking to control the relative phases of the optical signals em...
متن کاملExperimental demonstration of spinor slow light
Slow light based on the effect of electromagnetically induced transparency is of great interest due to its applications in low-light-level nonlinear optics and quantum information manipulation. The previous experiments all dealt with the single-component slow light. Here, we report the experimental demonstration of two-component or spinor slow light using a double-tripod atom-light coupling sch...
متن کاملPhase locking of multiple optical fiber channels for a slow-light-enabled laser radar system.
Phase control is crucial to the operation of coherent beam combining systems, whether for laser radar or high-power beam combining. We have recently demonstrated a design for a multi-aperture, coherently combined, synchronized- and phased-array slow light laser radar (SLIDAR) that is capable of scanning in two dimensions with dynamic group delay compensation. Here we describe in detail the opti...
متن کاملLaser light condensate: experimental demonstration of light-mode condensation in actively mode locked laser.
We have recently predicted (R. Weill, B. Fischer and O. Gat, Phys. Rev. Lett.104, 173901, 2010) condensation of light in actively mode locked lasers when the laser power increases, or the noise, that takes the role of temperature, decreases. The condensate is characterized by strong light pulses due to the dominance of the lowest eigenmode ("ground state") power. Here, we experimentally demonst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2011
ISSN: 1094-4087
DOI: 10.1364/oe.19.015760